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ABSTRACT

The problem of narrow band interference while transmitting broad-band signals
like Direct Sequence Spread Spectrum is a common source of problems in Electronic
Warfare. This can occur either due to intentional jamming or due to unavoidable
signal sources present in the vicinity of the receiver. Lack of improper information
on these narrow band interferers makes it difficult to cancel them.

In this thesis the above problem is addressed by using an adaptive notch filtering
technique. Before adopting such a technique other methods like the Least Square
Estimator and the Maximum Likelihood Estimator were explored. However the Kwan
and Mastin adaptive notch filter structure was found both relevant and suitable for
the problem of interest. The Kwan and Martin method has the difficulty of increasing
hardware complexity with aumber of notches. This makes it difficult to implement
in real time. A new algorithm was developed for the purpose of implementing the
structure in real-time. This new‘algorithm offers the same performance at reduced
hardware complexity. This algorithm was simulated and the results were presented. A
hardware feasibility is discussed by proposing a simple structure based upon existing

commercial signal processing chips.
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I. INTRODUCTION

A. MOTIVATION

The problem of suppressing narrow-band noise from a broad-band spectrum is
of considerable importance in the areas of Electronic Warfare and Anti Submarine
Warfare scenarios. In this thesis a workable solution is proposed for the problem cre-
ated by narrow-band interference. This solution will come in the form of an adaptive
digital notch filter. However before the details of the solution to the problem are
discussed, a brief description of the problem is given

1. Electronic Warfare(EW)

A typical EW scenario is given in Fig 1.1. ln this scenario a transmitter
transmits information over a long distance. As an Electronic Counter Measure(ECM)
this information is coded and transmitted 85 & Direct Sequence Spread Speitium
(DSSS) signal. lnherently this signal is a broad-band sigoal. However at the EW
receiver there is often narrow-band interference from such things as push to talk
systems{PTS) that -swamp out the received DSSS signal. Sometimes for reasons of
- signal security PTS operating {requencies are \*m‘ing with time. Under conditions
such as these the EW receiver cannot function effectively. For proper fuactioning of
the EW receiver we must enhance the received signal by selectively and adaptively
suppressing these natrow-band signals. ’

2. Assumptions
A This thesis addresses the problem atising at the tactical data communica-
tion link. In this EW scenario as dipicted in Fig 1.1 we are attempting to perform

signal analysis oa a DSSS signal using a EW reciever. This EW receiveris not the des-
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ignated receiver and hence does not have the spreading code available. For this reason
the narrow-band interference severely limits the ability to determine the charaterstics
of the recieved signal such as carrier frequency, chip-frequency etc.

A typical DSSS system is the Tactical Information Distribution Systems
(JTIDS)[Ref. 7). Data on such a link is generally in the form of digital messages.
A typical L-band (960-1215 Mhz) JTIDS allows transfer of digital data between any
properly equipped users within line-of-sight. The typical RF band-width required is
around 10Mhz.

Assuming a Superheterodyne EW-receiver, the band-width of the Interme-
diate Frequency (IF) need be only 10Mhz. This enables us to digitize the signal at
the base-band with a (20-50)Mhz Analog to Digital(A/D) converter. 1t is assumed
that this signal is digitized and converted into a floating poiut number. In this thesis
it is assumed that the floating point arithmetic is of sufficient prcéision that réunding

errors are not a significant problem.

B. PROBLEM DEFINITION

The signal described in section (I1.A.3) can be thought of as a broad-band signal

- with additive narrow-band signals occurring at arbitrary frequencies and times. These

* . narrow-band signals can be modeled as either pure sinusoidal signals, as outputs of a

. narrow-band filter excited by white noise, or as any band-limited narrow-band signal.

We shall assume that the signal y is received by the receiver and is defined as

3
Ye=wit 3.2+ N ' (1.1)

i=1

" where 2\, the interferer, is either a pure sinusoid or a narrow-band signal whose
. k 4

= frequercy (1.~ center frequency) can vary slowly with time. The term wy is the

- _'ibrqadfba,r_\d D588 signal of interest and i is White Gaussian Noise{WGN) with zero

- mean and variance ¢ N(0,¢") The goal is to remove only the narrow-band interferers

3




and obtain the output (wi + &) for further processing. A tyvi.al spectrum for yi is
given in Fig 1.2.

In this thesis, the design for an adaptive digital filter that will achieve the goal
of removing narrow-band interferers from a broad-band signal of interest is developed.
This thesis is organized into five chapters. chapter I is the introduction. The chapter
II concentrates on building necessary background on such things as the Least Square
Estimator and Maximum-Likelihood Estimator. Chapter III briefly explains existing
methods of adaptive filtering with emphasis on adaptive notch filtering techniques
. The new algorithm [Ref. 26] develoyed for the purpose of addressing the current
problem of interest is also explained. Chapter IV is totally devoted to modelling
various signals required for testing. Simulation results are discussed and presented.
Chapter V provides a brief survey of existing hardware componeris and a look at

possible bardware structures and their limitations. Chapter VI is conclusions.
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II. ESTIMATION TECHNIQUES

A. DIGITAL FILTERS
Digital Filters can be characterized by their impulse response, their trans-
for function, or by a difference equation [Ref. 13] . A typical Infinite-Impulse-

Response(ZIR) nlter represented in difference equation form is given by
Tk = @1Tk-1 + G2Tk~2 + G3Ti-3 + byt + byuiy (2.1)
while an Finite Impulse Response(FIR) filter is given by
Tr = bug + byup-y + byus-3 (2.2)

where u, is the input to the uiter and zi is the output of the filter. z, and u, are
the sampled velues of the continuous fun.tions z(t) and u(t). By choosiag T, as the

sampling time we notionaily write the discrete - ‘gnal as
2k = z(k) = z(k7,) (2.3)

Let X(Q2) be the spectrum of the signal zi, where Q is the angular frequency
component present in the actual signal. For analvsis purposes consider normalized
frequency given as w = QT,. With this definition we do not ha.¢ to use the actual fre-
quencies but only the normalized frequencies. Assuming that therc is no aliasing while
sampling the maximum normalized frequency is 0.5 cycle/sample or = rad 'sample.

1. Some Hardwere Schemes
' Fig 2.1 represents a conventional Direct Form II 1_presentation of a digital
filter [Ref. 18]. However for high-speed throughput it s often necessary to have a
pipelined architecture. FIR §liers are highly amenable for pipelining thus giving a
high throughput rate for computations.
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2. Modelling Hardware Multiplier and Adder

Multiplication of two variables say b; and uj in hardware can be modelled

bi*up = by *ux Dy = b D (2.4)

where * is the hardware multiplier and # is the ideal multiplier and D, is the propa-
gation delay associated with the multiplication. Similarly a hardware adder is desig-
pated as + while the ideal adder is given as + and the corresponding delay associated
with the adder is D,;. Then an addition of two variables u; and u;.; can be written

as
uri-uh-x = (ux + uk-1)D; (2.5)

Each of the previous devices can be incorporated into a pipeline digital filter structure

by following it with a synchronizing register. The clock period must then be less than

D +1, +1, where ¢, is the register setup time and {, the register propagation delay.
3. Pipelining an FIR filter

In this section we wish to realize
r=beupt+byeupy +beus, (2.6)
It is acceptable to have an overall delay DV , However it is desirable to minimize N:
2y DV (b o ug + By eupy + by o uies) (2.7)

First associate one D with each multiplier and form real multipliers by the notation

De = &. Then we get
= D=1 (D eup + 5D e uk — 1 4+ 53D 2 upy) (2.8)
Now form the real multiplier

3 = DNV {biduy + bisuk = 1 4 byéuy.,) (2.9)

8




Now we use one additional D to associate with the adding of bo%ui_, and bskui_,.
(Note: It is important to choose the most delayed values first in order to minimize
N)

£x = DN=2 { Dby#ui + D(by%upq + bakus_p)} (2.10)

Now form the real adder
&1 = DV { Dbiius + (brduey Hosbura) } (2.11)

Now we use an additional delay D to associate with the final adder to get a real
adder:

i = D=3 { Dhydurk (b upr Hbsbun_a) } (2.12)

Finally we choose the system delay such that D = z~! and replace us-; =

z7%u; and ui.y = 2~ s, thus we get
g = 2N {z"b;&uk-i-(z“b;&u&-i-z"b;,&uk)} (2.13)
Now factor ==! out of the expression to obtain
20 = 27N bbu b (bbupt 2 b)) (2.14)

Note that N = 2 is the minimum possible value of N for a causal filter. Choose
N = 2 then
Ex = {(bdupt(batup s beu,)) (2.15)
Equation (2.15) is very convenient for pipelining and is given one to one in Fig 2.2.
The above procedure is general for any FIR filter. Pipelining an FIR filter

results in maximizing the sampling or throughput frequency at the expense of a delay

or latency in the availability of the output.
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4. Pipelining IIR filters

Pipelining an IIR filter is considerably more difficult than an FIR filter.

This is mainly because the delay in the availability of the output makes it impossible

to feed back output values with short delay as is required for the straightforward IIR

implementation. As an example consider a simple 1st order IIR filter

Tk = Q1 * Tk + Uj

As in the FIR case we introduce a delay DV as follows.
& = DN (a1 * zi-1 + wi)
Now we use one delay to form the real multiplier:

&x = DN=Y(ayD % 2y + Duy)

= DN"aykzroy + Duy)
We use one more D to form the r.eal adder
&k = D¥"*(ayD % a1 dux)
Finally assume D = z~! and z}-; = 2”'z; then

2 = 27NV (g la b )

= N (aiizdu)

For & = i, N must be zero. However N > 1 is required for a causal filter.

(2.16)

(2.17)

(2.18)
(2.19)

(2.20)

Solutions to this problem exist. They use a higher order difference equation

representation of the filter with equivalent characteristics, so that feedback loop delay

greater than 1 can be tolerated. More details can be found in the literature [Ref. 14]

regarding pipelining of IIR digital filters.

11




B. SIGNAL CHARACTERIZATION
The signal y; of equation (1.1) can be characterized either in the time domain
or frequency domain and the signal can be easily transformed from one domain to the
other via a linear transformation.
1. Time Domain Representation
In the time domain representation, the signal yx is modelled as the output
of a linear system which may be either an all pole or a pole-zero system [Ref. 13].
The input is assumed to be white noise but this input to the system is not accessible
and is only conceptual in nature. Let the system under consideration be
P g
Yk = 3 Gilk=i + 3 Dig1Yeej (2.23)
i=1 j=0
where 4, is a white noise and y, is the output of the system. Equation (2.23) also

can be represented as a Transfer Function(TF) [Ref. 17}

- B()
H(z) = ACz) (2.24)
or
_ [ B(2)
Ty = {A(z)}‘rk (2.25)
where
p .
AR)=1-) a2 (2.26)
and
q 3
B(Z) = Ebj+12-J (227)
J=0
we define the parameter vector as
pt = [alaam'”’ambhbm"'5bq] (2.28)

The parameter p completely characterizes the signal z; The above system defined

by the equation (2.23) is also known as an Auto-Regressive-Moving- Average(ARMA)

12




model [Ref. 12],[Ref. 15]. It is conventional to denote a p poles and ¢ zeros system
as ARMA(p,q)-
2. Frequency Domain representation

The signal y; of equation (2.23) can also be represented as a vector

YN =y yn] (2.29)

which can be transformed into the frequency domain by the DFT relation

N-1
g = %,- {,;2:% (W""y,,)} (2.30)

where W = e~% and J = v/—1. In general g, is a complex quantity. However we

restrict our interest to the power spectrum a real quantity given as

8k = gkgk (2.31)

The series Sy

S =[8++sn] (2.32)
is another form of representing the signal and is designated as the power spectrum of
the signal z;. Even though the signal in this domain is very convenient to handle,

computational complexity and other considerations limit its use for online application.

Also in this representation phase information of the signal is lost.

C. SPECTRUM ESTIMATION
1. Least Square Estimator

Consider the signal yi the output of a linear system excited by a white
noise as given by the equation (2.23). Now our problem is to estimate the parameter

vector p by obtaining successive measurements of y,. We shall define the vector

x‘k = [yk-h BRREY [ TN The { TRAR "Yk-q] (233)

13




and z; = ¥ so that the difference equation (2.23) can be rewritten as
2z = PiXk (2.34)
an elegant solution [Ref. 2] for the above problem can be written as

Pi = Pir + Hixuer (2.35)

where

k -1
H, = (Z x;x,'-) (2.36)

=]

and
€k = Ik — Py Xk (2.37)

The block solution for the equation (2.34) can be also written in the form

p: = Hi (f: xm) (2.38)

=l
Equation (2.37) can also viewed as Az, — By, and this is represented in Fig 2.3.
Computing the matrix H, via equation (2.36) is computationally inefficient
and a recursive solution via the matrix inversion lema [Ref. 3] is preferred and is given

by

(2.39)

P |
H,=H.., - [Hh—lhkxsﬂ&q]

1 4+ xiHaaxs
Staticians refer to the Hy matrix as the covariance matrix while optimization poople
refer to H, as the Hessian of the objective function, where the objective function is
given by |

o = f;ef (2.40)
Appendix A gives a computer program bas:d on this approach that was used for this
thesis work to identify system parameters via Equations (2.35), (2.36), (2.37), (2.39).
The above method is known to work well as long as the measured value of the state
of the filter is free from noise. In the event z, is nol noise {ree, estimates are known
to be biased.

14




é

g2 ‘Bid

m

ijojeun3s3 ajenbg i1Sean

15




2. Maximum Likelihood(ML) Estimator
The ML estimator for the above problem is conventionally obtained by
considering a log-likelihood function [Ref. 16] anA minimizing it. However for getting
a better physical understanding the approach given by Young[Rel. 2] will be followed.

Consider a system as

()
Yk = [A( TR (2.41)
and an auxiliary system referred to as the model is given as
. B(z\
= | = 242
" [A(z)] ™ (242

and we define the function to be minimized as L = e}(p) where ex = yi ~ ;.
To minimize this function the derivatives and the Hessian of the function L where
L = (y: - #:)? need to be obtained. First take partial derivative of L with respect to

each parameter. For example

aL ., OF di
5. = 20 = A=) = ~2e 3‘;:) (243)

The partial $* can be obtained by differentiating equation(2.42) as

9 Eﬁl - 2 by + by2~! ‘ '

&b, {A(:)%} ob, ([ - ayz=t = ggz~d = 032_3] ‘7&) {2.49)
[ |
) [2‘2‘3] " (245)

Similarly the other partial ?}if can be obtained as

B(:) } _ (-‘i(z)a.,{m ) - Bk ..

{A( ) (A=) /" (49
_ B(=) . m
) (M(z)l" )" 40
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since 5%1—{8(2)} =0 as B(z) has no terms containing a,. Using equations (2.45) and

(2.47) the partials are:

0z 1]
— T ‘= re - 248
%~ A (246)
GEN [ B(x) }
—_— = b= | 2.49
aal k L[A(Z)]z Tk ( )
Oy [ 1 ]
2 = = e 2.50
a, Yy _A(z) Yk ( )
(2.51)
by defining
pi = [alsa%aaablab?] (252)
xi = [Zhoy. 7 iz Thozy Uk Y] (2.53)
Zi = {y;-—hy;-—myz—aau:vuz—ll (2'54)

the Hesslan may be approximuted by:
k -1
Hi= (Z x;z}) (2.55)
i=1 I

Using the above equations the parameter can be estimated via
Pk = Pe-1 + pHixiex (2.56)

where p is the step size 1n incrementing the parameter vector. A block schematic for
the algorithm was given in Fig 2.4. A serious drawback of this method is the stability
while incrementing the parameters.

3. Other Methods

There are many other methods such c= the Instrumental Variable (IV)
approach, the Approximate-Maximum-Likelihood (AML) Method and a combination
method IV-AML available in the literature [Ref. 2].
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D. SELECTION OF ESTIMATION TECHNIQUE

Before we select the appropriate method for the problem of interest, model-order
problems must be considered.

1. Model Order Problems

In the Least-Square Estimator for the parameter vecter p of the signal

z; we need to assume the dimension of p or the order of the system. Since the
system order is often not known a higher-order model estimate is assumed. Now we
investigate higher-order model fits for a lower-order data.

Consider the system equation (2.23) with parameter given as
p' = [1.7,-1.53,0.648, 1, 0.6) (2.57)

For the above system a Random Binary Noise(RBN) was given as the input u; and
the corresponding output z; is obtained, For the time series ux and z, an ARMA(6,1)
model was fit using the program given in the appendix and the parameter was esti-

mated as
p' = [2.26533, —2.79577,2.17249, —1.09877, 0.446598, —0.110151,0.998175]  (2.58)

Fig 2.5 gives the parametric spectrum for the above.

For the same data an ARMA(4,1) model was used and generating a pa-

rameter vector

p' = [2.16988, —2.41286,1.47436, —0.365412, 0.999317) (2.59)

Fig 2.6 gives the parametric spectrum for the above values.

Lastly for the same data an ARMA(8,1) model was used and generating a

parameter vector

p' = (2.276,-2.8"5, 2 267, —1.282, 0 703, —0.353, 0.143, —0.0035,0.9999]  (2.60)

19




Fig 2.7 gives the corresponding spectrum.

It is interesting to compare these with the actual parametric spectrum given
in Fig 2.8 For the sake of completion and comparison, the spectrum given in Fig 2.9
of the output time series z; computed via a DFT program is also included. This
simulation demonstrates that the existence of multiple solutions, hence an important
step in the estimation procedure is to choose an appropriate model order.

2. Choice of the Method

Since the filter hardware must be implemented in real-time at the frequen-
cies of 10 to 20 Mhz computational complexities must be kept to a minimum. These
methods although providing good performance, are not well suited to hardware im-

plementations. This motivates looking into new filtering methods.
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III. METHODS for FILTERING

A. FILTERING TECHNIQUES

Filtering in a broad sense is selectively suppressing a portion of the spectrum
of the given signal. In this chapter several filtering techniques are explored in the
light of the narrow-band interference problem in order to identify applicable filtering
techniques.

1. Filtering via FFT

Any given signal can be conveniently transformed into its power spectrum

via equation 2.31. Assuming the spectrum of the desired filter to be defined by wy.

The weighted output is given by:
Ui = SpWk (3.1)

and the corresponding filtered output y; is obtained by taking the inverse DFT of the
signal vi. A simple block schematic representing this idea is given in Fig 3.1. Details
of this approach are available in various references [Ref. 22].

Fast algorithms such as the FFT for computing the DFT make it possible
to do the above process in real time by using dedicated hardware. Honeywell makes
the HDSP66110 and HDSP66210 Digital Signal Processing chip pair which are ideally
suited for these applications. This chip pair can perform a single complex multiply in
40ns [Ref. 28). However the problem of filtering adaptively [Ref. 10] (i.e varying w;
according to a criterion) demands more computing power which can be obtained by
augmenting the DSP chip pair with a processor like the R3000 which has a Reduced
Instruction Set Computer(RISC) architecture with a high instruction execution rate
of approximately 25 Million Instructions Per Second(MIPS) [Ref. 27].
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2. Recursive DFT
Implementation of a higher order FIR filter using a recursive DFT [Ref.
23],[Ref. 24] is also very convenient for eliminating narrowband interference. The
basic concept is that the FIR filter is expressed as a product of two filter sections.
One section is a filter with its zeros being equally spaced on the unit circle. This
is achieved by a delay. The second section is a pole-producing section. Pole-zero
cancellation results in the desired FIR filter. More details can be seen in the references
[Ref. 23],[Ref. 24].
3. Adaptive Filtering
Adaptive filters can be placed into four classes based upon the choice of
the training sequence and the reference model for adaptation. Simon [Ref. 21]has

classified the Adaptive Filters into the following four classes
¢ Identification - Class I
o Inverse Modelling - Class II
o Prediction - Class III
¢ Interference Canceling - Class IV

Fig (3.2 - 3.5] give the block schematics of the various classes of adaptive
filters. In our problem, the reference model is naturally a narrow-band bandpass filter
since the interference signal is a narrow-band signal. The class of filtering that best
suits our problem is a combination of Class III and Class IV type of filter [Fig 3.4
and 3.5]. This logically points to an adaptive notch filter. Due to apriori knowledge
of the interference signal, only the parametric approach was. However the DFT-
based techniques may also offer a good solution and should be the subject of future

investigations.
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B. ADAPTIVE NOTCH FILTERS

Notch filters for removing multiple narrow-band interference can be categorized
into four broad categories illustrated in Fig 3.6 through 3.9. The first two categories,
Figures 3.6 and 3.7, are cascaded second order notches with each second-order section
removing one frequency. The next two categories,

Figures 3.8 and 3.9, are higher-order notches that eliminate multiple frequen-
cies. In all of the categories, it is possible to use FIR filters (i.e all zero filters) which
are easily pipelined and can be made truly linear phase. However, IIR notch filters
require substantially fewer multipliers and adders than FIR notch filters. Thus IIR
pipelining may become an important issue. In this thesis we limit our discussion only
to the first two categories illustrated in Figures 3.6 and 3.7.

1. Second-Order Cascaded Notch Filters

The second-order notch filter is used in cascade and in-line with the signal
as shown in Figure 3.6. The transfer function for such a notch filter is given by Kwan

and Martin [Ref. 8] as:

Hy(z) = 1- Hy(s) (32

ks (14 271)(1 ~ 2=1) :
! {3’1 (2= ky = kD)t 4 (1 ~ L*;)z"} (3.3)

i

22-h=k) oy , .o
2k l-—(—z—_'-si-d.‘-!‘za (34)

2 1-(2-k- k?)z"‘ + (1 = ky)z-?

For arbitrary values of k; and &, , this is a symmetric notch filter with unity

I

gain at DC and the Nyquist frequency. If k; is kept constant, then the 3db notch
width is also kept constant. Thus &y may be adapted to remove one narrow-band
signal. A cascade of such filters can be used to remove multiple narrow- band sigrals
[Ref. 8]. Constants ky and k, are related to the pole radius r and the normalized pole
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frequency 6, as

ks (1-r?) (3.5)

il

ko= /1412~ 2rcost, (3.6)
It is important to bear ir mind that the above transfer function has unity gain at

(3.7)

 2aresi l.___‘z__}
Opear 2czrc.sm12 \/i_:?%

which is different from 6, [Ref. §]
2. Second-Order Cascaded Signal Canceler
The cascaded second-order signal canceler approach shown in Figure 3.7
has the advantage that the desired signal does uot pass through the adaptive filter.
Instead, the band-pass ﬁltér is used to detect the narrow-band signal which is then
subtracted from the desired signal. A constant 3db bandwidth notch can be achieved

by selecting a band-pass filter with the transfer function:

_ kz(l - Z"z)
pr(Z) - 2D(Z) (38)
N(z)
D) (3.9)

where D(z) is the same denominator as Hy(z) in equation (3.4) The signal-canceler
structure is also nice for adaptation because it is relatively easy to generate sensitivity
functions which are related to the gradient of Hy,(z) with respect to the frequency
parameter k;. Figure 3.10 shows the block diagramn of an adaptive version of this
filter. The sensitivity function s(n) is obtained by differentiating the error signal
e(n) with respect to the parameter k;. This can be easily derived by noting that

e(n) = z(n) — y(n) and
Ge(n) _ dy(n)
ok, — Ok

(3.10)
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to get the above partial derivative we consider

y(n) = Hy(z)z(n) (3.11)
_ N
= D(z)x(n) (3.12)

the above equation (3.12) can be easily differentiated with respect to k; by using the

equation (2.47) to obtain:

9y(n) N(z) -1]
S AU A 3.13
i = - [ s 19
by recognizing that Hy,(2) = %(% from equation (3.12) the above equation can be
written as
dy(n) 2k, 271
o = Hyy(z) D) z(n) (3.14)
and by defining
. 2k12“1
Hy(2) = 3.15
&) =D (3.13)
we get the sensitivity function as
i
s(n) = ;X‘) = H,(z) = Hyy(2)Hu(2) (3.16)

The equation (3.16) is given as a block schematic in Fig 3.10. The parameter k; may

then be adapted by the formula:

Bi(n+1) = by (n) = pe(n) ”:((:)’“2 (3.17)

a. Computing ||s(n)||2

Ideally ||s(n)||? can be calculated by the relation

ls@P= 3 sy (3.18)

t=n=-N
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The above scheme computes the average of the past N samples. However a weighted
average of the past samples with highest weight for the recent sample can be done

quite easily by a first-order low pass filtering [s(n)]? as iollows:
Vp = Vg A + (1 = A)s?(n) (3.19)

However the above lowpass filtering can also be carried out by a second order filter

such as:
by(1 —2z71 4272
"7 [11(- or k1§ 2—2) ] [s(n)}? (3.20)
bi(1 — 2cos(50)z~! + 272
= [ ! 1- 2rf§cz")1 e )] [s(n))® (3.21)

Yet another way to estimate ||s(n)||® i simply:
N,
vn = 3 [s'(n))] (3.22)
=1
the above form is defined as zero order forgetting. It should be noted that equation

(3.21) was used by Kwan and Martin [Ref. 8].

C. MULTIPLE NARROWBAND SIGNAL SUPPRESSION

The second-order implementations of section (1.) and (2.) offer considerable
advantage both in hardware complexity and in adaptive performance for multiple
narrow band signal suppression [Ref. 8],[Ref. 25],[Ref. 26).

1. The Kwan and Martin Filter

In a recent paper by Kwan and Martin [Ref. 8], the problem of detecting

and enhancing sinusoidal signals in the presence of noise is addressed with a cascadz
of IIR adaptive notch filters which are used to eliminate the sinusoids. Each of the
sinusoids is eliminated by a bandpass filter whose output is an enhanced version of

one of the sinusoids. Hence this remarkable structure can perform both tasks with a
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single adaptive filter configuration which is shown to be highly robust and performs
extremely well.

The major disadvantage of the Kwan and Martin structure is that the
number of biquad sections needed in the adaptive filter configuration is given by
N(N+3)/2, where N is the number of sinusoids to be detected and removed. This
becomes impractical in real-time situations with more than 4 sinusoids due to the
geometric increase in the required hardware.

a. Kwan and Martin Structure

The Kwan and Martin structure consists of a cascade of IIR notch
filters one stage of which is shown in Figure 3.11. Each stage consists of a bandpass
filter with zeros at DC and the Nyquist frequency and unity gain at its peak frequency

w;. Such a filter would have the following z-domain transfer function

1-r} 1-272

2 1+-2ricosb;z= + riz—?

H = (3.23)

where

r; = pole radius of the i-th section
0.‘ = 27rw.-/w.
wi = peak frequency of the i-th section

wy= sampling frequency

Kwan and Martin identify two different methods for adapting the
filter. Most of their derivation is based on what they call the constant bandwidth filter
in which the pole radius r; is a constant and only the frequency w; is adapted. An
alternative approach which keeps a constant Q is also discussed in Kwan and Martin
paper. In addition, Kwan and Martin select the adaptive quantity in such a way that

it is fairly easy to determine the notch frequency from the adaptive parameter. From
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Figure 3.10, we see that the notch filter for each section is the difference between 1

and the bandpass filter, hence:

Hy(z) = 1 - Hjy(2) (3.24)

b. Calculation of the gradient
The basic structure of the Kwan and Martin adaptive filter shown in
Figure 3.12 is a cascade of N sections of the form of Figure 3.7. The overall transfer

function is given by

N

T(z) = EH}V(Z) (3.25)
N

= 1_‘[1(1— 5 (3.26)

Kwan and Martin choose as their objective function J(z) the square

of the output of the final stage of the cascade:

J(z) = {Ea2)} (3.27)
[T(2)P[X(2)] (3.28)

]

Hence, the gradient of the objective function J(2) is given by

8J(z)
Bk;

0T (2)
Ok;

= 2E)(2)X (2) St (3.29)

Thus in order to find the gradient with respect to the adaptive pa-

rameters k; , we must take the partial derivative of T'(z) with respect to each k;

""'— = HHN )afg(z)

u!

(3.30)
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From equation (3.24) we have

0H}(z) _ 81— Hi(2)]

ok - ok (331)
OH; (2) )
ok (3.32)

Using the rule for differentiation as given by the equations (2.45) and (2.47) and from

equation (3.23) we have

J . —9L.o~1
afngz) = —Hj(2) ;’“(’:) (3.33)
= Hj(2)Hi(z) (3.34)

where D(z) is the denominator of ng. Hi, is given by the equation (3.15).
Substituting equation (3.34) into equation (3.30) we obtain the over

all sensitivity for the jth k; parameter as

78 - MmeseRe (3.35)

#)

j=2 N . ) .
= [Qﬂx(z)] [H‘Hm] H}, (=) H (2) (3.36)
iz U
By recognizing that
Yi(z) = [ I1 Hi(2)H ] (3.37)
i2f=1

and by substituting equation (3.37) in the equation (3.36) we get
- [;II:HN( >] Hi,(2) (3.38)
Figure 3.12 shows the Kwan and Martin realization of the complete
adaptive system. The difficulty in the Kwan and Martin approach is in the generating
of the product of notch filters without the notch filter j, as required in equation {3.36).
To generate this product for each section, would require N — 1 biquads per section
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resulting in a total of N(N - 1) biquads just to generate the product. Kwan and
Martin are able to reduce this by using the output of the bandpass filter as the input
to their cascade via equation (3.37). Since this output already has (j — 1) of the
required H},(z) factors in it, only (N — j) additional biquads are needed for a total of
0.5(N? — N). Adding this to the N biquads required to realize the cascade of notch
filters and the N biquads required to realize the H(2) factors, yields a total number
of biquads given as 0.5(N + 3)N.
2. The New Structure
Figure 3.13 shows the improved adaptive notch filter structure [Ref. 25),[Ref.
26]. The key to the improvement is the recognition that the output B, (2) = T'(2) X(z)
for the cascade of the notch filters can be written both as a product of the individual
notch filter section transfer functions Hj,(z) times the input and in terms of the input

X(z) minus the outputs Y*(z) of the bandpass filters

E\(z) = T(2)X(z2) (3.39)
N .
- [Il‘n;..(a)] X(s) (3.40)
-} N |
o X(:)—(}:Y‘(:)) (3.41)
(173

To get the product of Hj(2) without the term i = j as required in the
equation (3.36), we may use equation (3.41) to sitply add back the term Y¥(z)

N N
[THN()] X(2) = X(2) - [TV (3.42)
% )

= By(2)+Y(2) (3.43)

Figure 3.13 makes use of this fact to generate the gradient needed for the
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adaptive process. From the Figure 3.13, we can see that the total number of biquads
required is N for the cascade of notch filters plus 2N for the Hj (z)H}(2) required for
adaptation, minus 1 at the last stage, since the last stage does not need the extra

H},(z)). Thus we have the number cf biquads required in the new structure is (3N-1).
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IV. MODELLING and SIMULATION

A. MODELLING OF SIGNALS
In order to test various algorithms and to evaluate their probable performance
in the real environment, it was necessary to develop a meaningful simulation of the
real situation. To achieve this, the following four testing categories were developed:
(i) Sinusoidal signals with white gaussian noise
(ii) Narrow Band Noise with white gaussian noise
(iii) Bi-Phase Shift Keying (BPSK) sequence
(iv) Frequency Shift Keying (FSK) sequence
1. Sinusoidal Signals

In order to generate sinusoidal signals with minimum computational burden

placed at different frequencies g; f,, a second order AR process

2} = 2c08(6:)z}_, — 2}, (4.1)
was used. Initial conditions are very importani and they are chosen such that &_, = 0
and z.; = ~sin(6,) giving a unit amplitude sinusoidal signal. The 9; value is between

0 to 180 and n is the number of frequencies dasired. The required signal i needed

to input into the adaptive algorithm is given as

n -
Vo= zi+m (4.2)
(£
where v is a white gaussian noise N(0, o).
2. Narrow Band Noise

The narrow band noise signal is generated using the difference equation
| 2} = 2reos(8:)ai_, - risi, + ul (4.3)
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where 6; decides the placement of the noise in the spectrum ard r controls the band-
width of the noise. The u}, is simply a uniformly distributed noise taken at different
instants. The desired signal yx is obtained via
i=n
Y = ‘2_; zi+ % (4.4)
3. Bi-Phase Shift Keying Sequence

The generation of BPSK signal has three distinct three parts:

(i) Generation of Random Binary Sequence(RBS) is achieved by passing
uniformly distributed noise through a hardlimiter (An important note is that the
interval between the two consecutive bits of RBS is 4-);

(ii) Another sequence of binary numabers is a spreading code or sequence.
The specific sequence used in a given communications system is normally not available
to anyone but to the designated receiver, (In this particular simulation we have
generated the spreading sequence by passing uuiformly distributed noise through a
bardlimiter. The bit interval is 4-);

(iii) Phase encoding (i.e.) mapping the given binary signal which is the
exclusive or of (i) and (ii) as 0 or » at appropriate sample time.

The output of the first hardlimiter is stored ia an array z. Output of the
second hardlimiter is stered in the array y This information is retrieved by a subtle
use of the array index given as 1 = kfy where 1 is the index, k is the discrete sample
number and f; is the bit rate of the intelligence. Similarly another index j is generated
using j = kf, where [ is the chip frequency. Generation of the indices is the key
thing in this simulation. The desired signal now is given by the equations

u} = Acos(2x fok + i) ‘ (4.5)

é = [z() @ y(h)ix (4.6)
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p=n

ai = Zw{ (4.7)

p=1
where 1 and j are indices of the arrays as defined eatlier. It is an importani point

to note that the characteristic of the signal w} are defined by the parameter p =
{fo, fos fo}- .

This signal is not really a simple BPSK signal but it has an additional fea-
ture of spreading the spectrum by controlling the chip-frequency and carrier frequency
and information rate. A block diagram of the scheme is given in Fig 4.1.

The desired signal yi is given by:
Y = o + B (4.8)

where a; is the set of narrowband BPSK signals placed at different places in the
frequercy spectrum and f§: is the broad band BPSK signal generatad for a specific p
value,
4. Frequency Shift Keying Sequence

Generating this sequence needs a random binary intelligence signal. This
was once again is achieved by passing a uniformly distributed noise through a hardlim-
iter. The output- of this bard limiter stored in an array z. An index 1 is chosen such
that § = kf, where ji is the baud-rate of the information and & is discrete sample

aumber, Now the desired signal is generated via

s = 2008(0) )54y — Sp-2 (1.9)
Or = 0 4 82(3) {4.10)
n=%tn (4.11)

where 0 is the carrier frequency and & is the depth of the frequency modulation.
Initial conditions are very important and they are chosen such that s_; = 0 and

3.2 = —sin(6) giving an unit amplitude sinusoidal signal.
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B. SIMULATION

The adaptive digital filter algorithm as described in the earlier chapters is sim-
ulated and tested using synthetic data. Simulation was carried out on a VAX 11/785
computer using Fortran 77. Listing of the program used is enclosed in the appendix.

The adaptive filter parameters of interest are

(a) Sharpness of the notch filter defined by pole position (r? = 1 — &)
(b) Step size in the parameter update procedure (x)

(¢) Time constant of the fading filter (A) ( refer to equation 3.19)

(d) Model order (N= # of 2nd order filters)

(e) Order of the incoming signal or number of interferers (m)

1. Kwan & Martin Algorithm

In simulating this algorithm, the most important thing is the implemen- -

tation of the notch filter. Fig 4.2 gives the structure of the algorithm. Let z(n) be
the input to the Adaptive Filter and e(n) the desired output. This desired output is

obtained by passing the input z(n) via a cascade of N notch filters as
e(n) = {HY () HN - Hi(2)} 2(n) (1)

Output at the intermediate jth section of the band-pass filter is designated as y’(n)
as shown in Fig 4.2 Then the sensitivity of the x] parameter, is obtained by passing

this y/(n) through another cascade of (j ~ 1) notch filters given as
si(n) = {H{"HE® - Hy L }y'(n) (4.13)

The filter transfer functions Hj(z) and HJ, were defined in the earlier chapter by

equations (2.21) and (2.15).
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2. The New Algorithm
The primary difference between the New Algorithm and the Kwan and
Martin algorithm is in the method of obtaining the sensitivity of the jth coefficient.
This difference can be seen in the Fig 4.3. The output y?(n) at the jth notch Fig 4.3.
filter is added to the over-all output e(n) and this summed output is passed through

a cascade of only two filters as shown in Fig 4.3 and can be given as
s'(n) = [HLH| {e(n) + ¥ (n)} (4.14)

3. Forgetting Filters

For parameter incrementation via equation (3.17) we need to obtain |[s?(n)]l.

This could be achieved by

a) Zero order forgetting asing equation (3.22)
b) 1st order forgeiting using equation (3.19)
c) 2nd order forgetting using equation (3.21)

4. Stability

The parameter incrementation given by the equation (3.17) can be recast

by using either of the forgetting filters given above as
K=&l - pl) s (m)e(n) (4.15)

It is very import'a.nt to note that the above equation (4.15) has a close resemblance
with the ML Estimator. In the MLE case the stability while incrementing the param-
eter is an important factor. A similar problem exists in the current incrementation
procedure but the problem is solved by a suitable choice of parameters and modify-
ing the incrementation procedure by adding an additional factor to equation (4.15)

as follows:

o el | LT .
| = ]~ pe(n)si(n) | —mes (4.16)

48




ey Bid

sSs dg

] H H 4
(2) 8 Dn On é (2)9

N _

88 dq

ANV+WI, () (H [« (z) [H* @.ﬂ

{ -

. | (z) A

N
dq .

] E»Mz — (= H| —X)<
Z) s T
(2), A

< 3_>
88 q :
oL {e-®
. N »
(Z) A (2) A
e €
d a9, . dq daq

A VT. E»w H |+ Ea”_: —(2) M: (2) mf l?c (H —1(2) o H
Z) S ‘

: . Q)

< K X{ 3 K

(2)e O. Or O. (2)X

alnioniiS MseN

4s




This modification also protects against possible overflow or underflow while computing
[v"]™". In addition simulations indicate that in the case of zero-order forgetting, this
factor is required in order to obtain convergence. When vpi, and vpmq, are zero and
infinity respectively, equation (4.16) reduces to equation (4.15).

In this incrementation procedure two forms of the denominator polynomial

of the Hy,(z) were considered:
Di(2)=1-Q2—ky— k)2 4+ (1= k)27 - (4.17)

and

Di(z) = 1~2&irz™! 4 r2572 (4.18)

where & = cos(').

While using the incrementation procedure, under transient conditions poles
of the D‘(z) cross the unit circle causing instability problems. This condition was
averted by checking the pole position after incrementation and if unstable then in-
crementation is modified. Checking this condition for D(z) given by equation (4.17)
calls for solving a quadratic equation at every parameter increment and examining
the pole position. However this check is very simple for D(z) given in equation
(4.18), since we need only to check x{ by maintaining |x{| < 1. Furthermore the
value of r must be positive and less than unity for stability. The choice of the r is
very important for proper fast convergence. Fig 4.4. shows the frequency response of
band-pass filter for different values of r The 3dB band-width of the band pass filter
is related to r and is given [Ref. 29] by

2
Band — width = cos™* { li‘r‘} (4.19)

Note that under limiting conditions, the band-width is essentially zero. In this simu-

lation it was assumed a value of r as 0.95.
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A large number of simulations [Ref. 29] were carried out using sinusoidal
inputs with and without noise for different m and N values. In these simulations
the denominator polynomial used was given by equation (4.18). The results were
tabulated in Table 3.1. From Table 3.1 it is seen that the choice of the step size is
an important factor and step-size must be optimized for a specific number of sections
N. The values of vy, and vy,,, did not pose any problem while incrementing using
1st order or 2nd order forgetting filters. It seems that a 1st order forgetting filter is
more effective than either zero-order or a 2nd order filter.

After fixing the values of 4 and X the algorithm was tested using Narrow
Band Noise signal y; for its performance. This signal was used only to tune the value
of r (i.e. sharpness of the notch filter). The following simulation results are based on
parameter adaptation for the D'(z) given by equation (4.17).

5. Response for Sinusoidal signal

A sample simulatior output due to sinusoidal signal was shown in Fig [4.5
- 4.7). The input signal is composed of 3 sinusoids with normalized frequencies 3%% fas
o= fs, and 22, and WGN with o = 1. The spectrum of this signal is shown in Fig
4.5. After passing this signal through the adaptive filter we could see that interferers
were removed and oniy the noise was left behind. This is clearly shown in Fig 4.6.
The adaptation process is shown in Fig 4.7, |

6. Response for Narrow Band Noise

In this testing category sinusoids were replaced by narrow-band signals.
These signals were generated via equation (4.4). Superimposed on this signal, WGN
with o = 1 was added. A typical spectrum of this signal is shown in Fig 4.8. This
signal was passed through the adaptive filter and these narrow band interferers are

notched out and only WGN is left out as shown in the Fig 4.9. Fig 4.10 shows the

corresponding parameter convergence.
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7. Tracking FSK Signal
Transient behavior of the adaptive filter was studied by applying an FSK

signal (generated via equation 4.11). In the case of an FSK signal, signal spectrum
constantly .hanges. This property is useful for testing the tracking ability of the
adaptive filter, In fact a WGN with o = 1 was also added to the signal. An adaptive
filter then was used to demodulate the signal, by tracking the spectrum. This is
shown in Fig 4.13.

8. Suppressing BPSK Interference

Having seen the performance of the adaptive filter under various conditions,

it is only needed to test under an additional constraint of broad band noise. In this
case, the broad-band signal was swamped by narrow-band interferers and WGN. A
typical broad-band signal is generated by using a BPSK signal generator via equation
(4.8). In this we have used carrier at 0.25 cycle/sample and the chip frequency at 0.125
cycles/sample. The narrow-band interference signals are also generated by using the
same BPSK signal generator, but with different parameters. Interferers are chosen
such that the chip frequency is fixed at '2-%-5 fo cycles/sample, while carriers were chosen
8t 355 for 555 oy and 17, cycles/sample. To these interferers and broad-band signal,
a WGN with ¢ = 1 was added. The compaosite signal spectrum is shown in Fig 4.14,
indicating the three interferers, broad-band signal, and WGN. This signal was passed
through the adaptive filter. Output of the filter is shown in Fig 4.15. In this figure
it is clear that the interferers were removed by the filter and only the desired signal
was left behind.

8. Model order mismatch

The mode] order of the algorithm was fixed at 3 while BPSK signals were

generated with 2 interferers i.e. m = 2 and N = 3. Fig 3.16 shows the parameter con-




6:0°°°° "' I 1237173 2a73depy
zo°0° - de3is I83T1T3 aatidepv
o'T"-"""° asTou 3yl 3JO doueTIEA
S*'%¥‘0°9°" """ """ soeds pue aeuw
ay3 Jo 91oAD IJ9TIIED 194 sotdues
Teubys ASd " 3ndul
¢TIy b1a
ooV 00€ 002 00T 0

B 4001

- 40ST

00¢

Imryoads 3ndIho

~ e ——)

€T % B13
134143 000¢ 0006¢ 0001 0
HETTIR S SRHETIE 0
n.~*_u_ 1 _. n_ __‘ﬁm
Jigigl 1 m_ oy
1191, 1 R MRTEEES
- 13114} 1 __ u_ niy4s 1]
H_L_" i Y Hity)
__“m_“ | (! ““_.__
Rt t )
a _ . r,_ [F .H
s €1
—— ssUSbISATCSTSIowWETET — ¢
11y bya
(1145 00¢ 00¢ 00 0
e — - 0

T

"

0s

4001

56




6°0" " I I937173 @at3idepv
20°0" de3s 193773 2ay3depv
o-w ........... ¢ » o o o uwg mﬂgu

xod sotdues Teubis pueq peoig
0% 9T2&D J9TXIIED

xad soTduwes Teubis pueq peolg

..........

00¢’00z’00Z "o © SI3I93X33UT
30 379 dyyDo 19d sajdues
o.m~mov\°.mlﬁ .............. mmumwaﬂm“cﬂ

2y3 30 °T0AD JI3T1TXIED 19d seojdues

£ "
Nodg-Sg e

SI9JI9JI9]3UT 3O ISqunN
: anduil

o . o o e

coT

i . ‘ . 4002

i oods—gndThio——— 007

91 v b1a3
000» O000E 000Z 000T 0,
! oot previcin sl € 0
| L
| !
" & 1

) ol

- I “
i E.L ;.-n 204t
i

rgr

- ‘ £°1

' )
AP sARI g PR g e Lo o] HOO

i
1

-

—soUTsITATDS TITauETTT — ¢

vyt ¢ 634
0c¥ 00¢ €02z GOT oo
i 4001
L 4002
g {00¢

57




6°0° "7 I 193773 3ayidepy
zo'0° - do3s I3371T3 oatidepv

°~m ................ unﬁﬂ mﬂﬂmo

1ad satdwes Trubis pueq peoxd

o.w ........... m.ﬁﬂv%U Hmnﬂ.HonU

Iad soTduwes Teubis pueq pecig
OON~OON~QON ............. WHNHNMHUQQﬂ
3o 37q diyd x2d saidues
O.M\O.NH....‘... ..... . mmhmwhmﬂﬁﬁ
3yl JO 9T104LD x38TIIED x9d satdues
Z°°° SI2I93I33IUT JO II3qUEnN
vmmmml.ma ....... ¢ & o 2 » e o ¢ o o o Uﬂ.—&mHH

€=U pue g=-w ydjewsjw TIPOW

8T v btd
00% 00¢€ 002 00T oo
0S
001
- 4081
B . . , 1002
4osz

imrysods—grdagio—— 00¢€

o0V

61 ¥ 614
000€ 0002 oooﬂ

%?ﬁli%;&g .

58




vergence under these conditions and Fig 3.19 shows for m = 1 and N = 3 conditions.
We could notice that free extra parameter(s) wandering due to the mismatch. This
has the effect of notcking out the desired signal. This can be solved by deliberately

introducing a known BPSK signal at fixed place.
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Summary of Tests on the New Algorithm

TABLE 4.1

Ca?# of Sin€S | Ymin | Umaz | Noise | zero order lst order 2nd order

sections ITi tter U tter g | ster
la 1 1 0.0520 |mno 0.05 |67 005 |20 10.05 (20
lan |1 1 0.05 {20 | yes 0.05 | jump | 0.05 |20 0.05 | 144
1b 1 3 005120 |mno 005 |jump|[0.05 {30 |0.05]25
1bn |1 3 005120 | yes 0.05 [jump |0.05 {50 |0.05]100
2a 5 3 0.10 110 | mo 0.017 | 340 | 0.063 | 200 | 0.07 | 400
2an |5 3 0.10 | 10 | yes 0.017 | 1200 | 0.063 | 400 | 0.07 | 450
2b 5 5 010 |10 |ro 0.017 | 1410 | 0.063 | 150 | 0.07 | 500
2bn |5 5 0.10 [ 10 | yes 0.017 | 3500 | 0.063 | 175 | 0.07 | 250
2c 5 1 010 |10 |no 0.017 | 1667 | 0.063 | 450 | 0.07 | jump
2n |5 7 0.10 {10 | yes 0.017 [ 700 |0.063 | 167 | 0.07 | jump
3a 10 7 00215 |no 0.02 | 1667 |0.075 | 500 | 0.07 | 1500
Jan {10 1 0.02 150 | yes 0.02 | 5000 }0.075] 750 | 0.07 | 1000
3b 10 10 00215 [no 0.02 | 7500 |0.075 ] 2000 [ 0.07 | 5250
Jbn |10 10 0.02 150 | yes 0.02 |1000 |0.075 | 2000 0.07 | 2500

e In all cases with noise, parameters converge to exact value when number of

notches is greater or equal to number of sinusoids. Iterations listed in table

represent convergence to three decimal places.

¢ In all cases with noise, parameter oscillate around the exact value. The number

of iterations listed in the table is the number of iterations required to establish

this oscillatory pattern.

¢ In some cases with more interfering sine waves than notches will jump at random

between sine waves. This pattern is indicated in the table by the word jump.

¢ Values of Upn a0d Uma in the table refer only to zero-order forgetting which

generally will not converge without limits on v. All other types of forgetting

were run without limits on v
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V. HARDWARE IMPLEMENTATION

Although hardware design is beyond the scope of this thesis, in this chapter we
shall briefly look at possible hardware configurations with a view toward feasibility

of the new algorithm.

A. HARDWARE FEASIBILITY
In recent years many dedicated digital signal processing chips have become
commercially available. Table 5.1 gives characteristics of some typical chips that are

currently available.

- TABLE 5.1
Feature : Commercial Make
,_ MIPS R3010 | Weitek 3364 | TI 8847 | AT&T DSP32c'
Cycle Time(ns) | 40 50 : 30 20
"I Cycles/add 2 12 2 2
Cycles/mult 5 - 2 3 2
Cycles/divide |19 ' 17, o 11 3
Cycles/sq root |- - 30 14 ?

Data on MIPS R3010, Weitek 3364, and TI .8847 was obtained from the computer
architecture book by Hennesey and Patetrson [Ref. 30] while the data for AT&T
DSP32c is obtained from DSP32¢ data manual [Ref. 31). f‘ig 5.1. gi\}es a schematic
of the 2nd order IIR filter hardware scheme. It has a coefficient memory which can
be set by an external device, Close examination reveals that Multii})lz'catz'ons A can
be perfprmed simultaneously while Multiplicdtion B a;ld other additions are to be in
sequence. Fig 5.2. | is the basic building block for the adaptive filter and is identical for
all the sections. This is offers an a,dve‘mtage in hardware complexity over the Kwan &

Martin approach. Filters 1 and 2 have transfer functions of Hy,(z) while filter 3 has a
Cx hotcloled dota +
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transfer function H,,(z). Throughput rate is primarily determined by the computing
time of the 2nd order IIR filter. The overall block diagram of the adaptive filter for a
3-Notch cancellation was given in Fig 5.3. This architecture remains same either for
a Floating point or Fixed Point arithmetic.
1. Time Budget

In the architecture of Fig 5.1, 5.2, and 5.3 the most vital elements are the
IIR filter, Controller and the Forgetting filter. The IIR filter corresponds to Hp,(2).
The controller has to update the parameter via equation (3.17) which calls for 2
multiplications, 1 addition, and 1 division. Similarly the Forgetting Filter has to
implement equation (3.19) calling for 2 multiplications and 1 addition. Results are

tabulated as given below

TABLE 5.2
Element | # of Efiective | # of Effective | # of |
Multiplications | Additions Divistons
IIR filter |2 3 nil
Controller | 2 ) 1 1
Fogetting
Filter 2 1 nil

The maximum computing time is at the IIR filter, Using the AT&T DSP32¢ proces-
sor, it takes 5 x 2 = 10 cylces (ie 200ns) for implementation the desired IIR filter. This
corresponds to a Throughput rate of 5MAz. This is the best that could be achieved
with the existing commercial floating point processors. However processors like the
HDSP66110 of Honey well make claim an ALU speed of 10ns with block floating point
operations can conveniently implement at 10AfAz throughput rate, without pipelin-
ing the IIR filter. With pipelining the throughput rate would increase dramatically,
but will never exceed the maximum throughput rate of 100 Az,
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2. VLSI Approach
Taking advantage of the fact that the entire hardware can be generated by
a simple repetitive use of the building block, strong consideration should be given
to designing a VLSI chip for Fig 5.2 rather than implementing the hardware via the
existing commercial chips. The main rationale behind this idea is that reliability

of the system is very important in EW equipment. Also VLSI has the potential of

ultimate-low cost.
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VI. CONCLUSIONS

In this thesis the problem of suppressing narrow-band interference was ad-
dressed. The problem specific to the Electronic warfare scenario was kept in mind
while solving the problem. The new algorithm [Ref. 26] was derived and simulated.
This new algorithm was tested against various signals and signal conditions. The
results are highly encouraging.

Some aspects of pipelining were discussed. Reduced hardware complexity of the
New Algorithm is an important advantage over the earlier algorithm by Kwan and
Martin [Ref. 8]. A possible hardware scheme for implementing the new algorithm
was discussed. It was observed that with the existing commercially available floating
point processors a throughput rate of 5Mhz is achievable while using processors like
HDSP66110 with an ALU speed of 10ns it is possible to achieve a throughput rate
of 10Mhz.

A. FUTURE WORK

Future directions of work are

i) VLSI design of the system with an architecture
as indicated earlier or a similar architecture.
ii) Pipelining of 2nd Order IIR filter suited for
this application
iii) Design using recursive DFT
The above areas of work are the logical extensions of this work. However a radically

different approach for the same problem using adaptive filtering in frequency domain
[Ref. 10} should also be considered.




oooooa0n0a00

00

oaar
o

oGgaeoo

000

APPENDIX A

dimension faray(5000)

dimension uaray(5000),yaray(5000)
dimension fhat (5000),ph(5000)

dimension a(90),b(90)

open (unit=9,file='spk.dat',status='new')

This programme generates input output
sequence by exciting a linear system
defined by the numerator polynomial

B(z) and denominator polynomial A(2)
this data is stored in uarray and yarray
Subsequently an ARMA (pole,zero) is used
to fit this data.

n=1024
ix=1
yk=rand (ix)
ix=0

kk=8

generate sequence uk and yk

ip=3

iz=2

a(1)=1.7
a(2)=-1.53
a(d)=0,648
b(l)=1.0
b(2)=0,6

do 10 k=1,n

call rbn(uk,ix, k)
call system(a,b,uk,yk,ip,iz,k)
uaray (k) =uk
yaray (k) =yk
continue

save the sequence in the arrays uaray and yaray
call spktrm(yaray,faray)

spectrum of the output sequence yaray is computed
using FFT programme and stored in faray for
conparision

ip=4
i2=}

Fit an ARMA(ip,iz) model for the given data
this is an ordinary least squares algorithm
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print *,'inpuc-ip-iz=-->!
read *,ip,iz

do 20 k=1,n

uk=unaray (k)

yk=yaray (k)

call arma(a,b,uk,yk,ip,iz,kk,k)
print #*, 'num->', (b(i),i=1,1i2)
print *,'den=->', (a(i),i=1,ip)
continue

print %, ‘num->', (b(i),i=1,1iz)
print *,‘den->',{a(i),i=1,1ip)

Sampling of the Z-transform. given
coefficients a .... and b .....
corresponding H(z) = B{z)/A(2)

is evaluated on the unit circle

for obtaing ibe paramstric spectrum

call zsmple(a.b, fhat,ph,ip,iz)

do 39 iw=l,n/2

print *,i,t~=>', fhat(i), faray{i)
write (9,*) i,fhat(i),faray(i)
continue

stop

end

subroutine zsmple(a,b,r,pi, ip,iz)
dirension a(%90),b(90)

dimension r(2048),ph(2048)
complex z,ui,fn, fd,onega,delw,spec
pi=atan(1.0)

pi=4¢,0¢pi

ui=(0.0,1.0)
delw=(pi/1024.0)%uie2.0
onega={0.0,0.0)

do 100 k=1,1024

z=exp (~onega)

£d={0.0,0.0)

do 10 i=1,ip
fdwfd+a(ijo(2er(~1))

fn=(0.0,0.0)

do 20 j=1,iz

fn=fn+b(i)e(zee(=-1))

spec=£n/£d

r(k)=abs (spec)

specr=real {spec)
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speci=aimag(spec)
ratio=speci/specr
ph(k)=atand(ratio)
omega=omega+delw
c print *,'--z-om->',z,0mega
100 continue
return
end

function atand(x)
pi=atan(1.0)
pi=4.0*pi
xrad=atan(x)
atand=xrad*(180.0/pi)
return

end

subroutine rbn(b,ix,k)
z=rand(ix)-0.5
if(z.ge.0.0) b=1.0
if(z. ltIOOO) b“'l.o
return

end

subroutine system(a,b,uk,yX,ip,iz,X)
dimension '
& ~zkar(90) ,zkma(90),
& A(90),b(90)
if (k.ne.l) go to 250
do 230 iw=},ip
230 zkar(i)=0.0
do 240 iw=},iz
240 zkma(i)=0.0
250 continue
» do 30 i=ip,2,-1
30 zkar(i)=zkar(i-l1)
zkar({l)=yk
do 31 i=iz,2,-1
31 zkma(i)=zkma(i=1)
tkma (1)=uk

yk=0.0
do 200 i=i,ip
200 ykmyk+a(i)e*zkar(i)
do 210 i=1,iz
210 yksykezkna{i)*b(i)
return
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end

subroutine delay(uk,yk,idelay,k)
dinension d(500)

if (k.ne.l1) goto 10
do 20 i=1,500
d(1)=0.0

continue

do 30 i=500,2,~1
d(i)=d(i-1)

a(1l)=uk

yk=d (idelay+1)
return

end

subroutine spktrm{taray, faray)
complex u{5000)

dimension taray(5900),faray(5000)
n=10

n=1024

h=n

do 20 i=1,n

u{i)=taray(i)

continue

call pfft(u,n,n)

do 30 i=),n/2
taray(x)ureal(u(i))

continue

return

-and

(2323313333423 333 2132132331832 2%
®

Subroutine for computing DFY of \

an array 'a‘' is complex and a pair

¢f nunbers are to be specified '

for each point *

m is the 2 power index *
say =10 then number of poxnts »
are 1024
after computation tft is kept *
in the same complex array 'a‘ .

*

(24333112232 223022221 2221222222273

subroutine pfft(a,m,n)
complex a(5000),u,w,t
tomplex ui,ur
pi=3.14159265358579)
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n=2%%n

nv2=n/2

nml=n-1

=1

do 10 i=1,nmil
if(i.ge.j) goto 20
t=a(j)

a(j)=a(i)

a(i)=t

k=nv2

if(k.ge.j) goto 10
i=J-k

k=k/2

goto 30

j=i+k

do 40 1=1,m

le=2%+]

lel=le/2

u=(1.0,0.0)
w=cmplx(cos(pi/lel),-sin(pi/lel))
do 40 j=1,lel

do 50 i=j,n,le

ip=i+lel

t=a(ip) *u

a(ip)=a(i)-t
a(i)=a(i)+t

u=uw

rn=n/2

ui=(0.0,1.0)
ur=(1.0,0.0)

do 60 i=1,n/2
a(i)=a(i)/rn
a(i+s512)=a(i+512)/rn
areal=real(a(i))
aimgn=aimag(a(i))
amagn=abs(a(i))
aphase=atand(aimgn/areal)
a(i)=ur*amagn+ui*aphase
areal=real (a(i+512))
aimgn=aimag(a(i+512))
amagn=abs (a(i+512))
aphase=atand (aimgn/areal)
a(i+512)=ur*amagn+ui*aphase
continue

return

end

PP SOs000Ioo000908S000008000008888

subroutine arma(a,b,uk,yk,ip,iz,kk, k)
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dimension
& zkar(90),zkma(90),
& zk(90) ,a(90),b(90),c(90)
if (k.ne.1) go to 250
n=ip+iz
ipp=ip+1
do 230 i=1,ip
a(i)=0.1
do 240 i=1,iz
b(i)=0.1
continue
do 30 i=ip,2,-1
zkar(i)=zkar(i-1)
zkar(l)=ykold
ykold=yk
do 31 i=iz,2,-1
zkma (i)=zkma(i=~1)
zkma (1)=uk
do 32 i=1,ip
c(i)=a(i)
zk(i)=zkar(i)
do 33 i=1,iz
c(i+ip)=b(1)
zk(i+ip)=zkma (i)
call syseq(c,yk,zk,n, kk, k)
do 34 i=1,ip
a(i)=c(i)
do 35 i=1,iz
b(i)=c(i+ip)

return
end

subroutine syseq(a,yk,zk,n, kk, k)

1223322 X122 322X X2 2322233222322 Y
solves system of equations with
# of equations more than unknowns
using linear reggression,

t

equation is yk=zk * a
where 'a' is n vector to be estimated.

hkhhhhhkkk ik khkkdhdhdkdhkdhdhkhhhdhkkhkdkk

dimension
& del (90) ,phat(90,90),2k(90),y(90),a(90)
it (k.ne.l) go to 250
alpha=1.0

250 continue

call inv(phat,zk,alpha,n, kk, k)

74




ykhat=0.0
do 40 i=1,n
40 ykhat=ykhat+zk(i)*a(i)
er=yk-ykhat
do 60 i=1,n
60 y(i)=er*zk(i)
do 80 i=1,n
del(i)=0.0
do 80 j=1,n
80 del(i)=phat(i,j)*y(j)+del(i)
if (mod(k,kk).ne.0) goto 70
print %,'e-->' k
print 100, ((phat(i,j),i=1,n),3=1,n)
print 130, (del(i),i=1,n)
print 160,er
print 170, (zk(j),j=1,n)
0 continue
do 50 i=1,n
50 a(i)=a(i)+del (i)
100 format(2x,'phat',2x,/,4el6.6)
120 format(2x,'zk',2x%x,/,4€16.6)
130 format(2x,'del!',2x,/,4€16.6)
160 format(2x,‘'ekl',2x,el6.6,/)
170 format(2x,°'zk',2x,/,4€16.6)
return
end

S0

subroutine inv(phat,zk,alpha,n, kk, k)
dimension phat(90,90),2k(90),q(%90),r(90),delp(90,90)
if(k.ne.1) goto 5
do 6 i=1,n
do 6 j=1,n
if(i.eq.j) phat(i,3j)
if(i.ne.j) phat(i,J)
6 continue
5 continue
do 90 i=1,n
do 90 j=1,n
phat(i,j)=phat(i,j)/alpha
9¢ continue
do 10 i=1,n
q(i)=0.0
do 10 j=1,n
10 q(i)=phat(i,j)*zk(j)+q(i)
sum=1,0
do 20 i=1,n
20 sum=sum+zk(i)*q(i)
do 30 j=1,n
r(j)=0.0
do 30 i=1,n
30 r(j)=phat(i,j)*zk(i)+r(3)

=1.0
=0.0
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do 40 j=
do 40 i=
40 delp(i,j)=q
do 50 j=
do 50 i=1,n
50 phat(i,j)=phat(i,j)~(delp(i,j)/sum)
return
end

=Nl ad
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APPENDIX B

simulation of michal paper IEEE

dimension ak1(10),ak2(10),s(10),xout(10),theta(10)

dimension aks(10),wp(10),ak3(10)

dimension array(4,4000)

open( unit=9,file='martin.dat',status='new')

open( unit=8,file='mart.dat',status='new')

print *,'-input-SNR-in-dB===>!

read *,snr

if (snr.ne.0) goto 200

var=0.5

goto 210

var=1.0/(2.0*%(10.0%*(snr/10.0)))

continue

print *,'--variance-->',var

n=1

print #%,'=-input-nh=-->!

read *,n
*, '=input-§-of-waves-=~>"

read *,nd

print *,'=-input-angles-->!

read *, (theta(i),i=1,n)

r=0.9

pi=4.0%*atan(1.0)

rad=pi/180.0

amu=Q,0

do 50 kl=1,50

amu=0,015 .

print *,'-input-step-size-- 0,015~-->',amu

read *,amu

print %,'--angles-->', (theta(i),i=1,n)

print *, '~-input--1l-for-step-change=-else«0-=>"*

read +*,ic

if (ic.eq.l) print #,'--input-step-in-degrees-->!

if (ic.eq.1) read #,step

do 40 i=1,n -

ak2(i)=(1-rer)

ux=theta (i) *rad

value=cos (ux) '

akl(i)=dl*sqrt(1.0+r*r-2,0*rtvalue)

akl(i)=sqrt (1.0+rer)

aks(i)=sqrt (1.0+rer-2.0*revalue)

continue

amu=amu+0,0001

do 10 k=1,6500

call system(yk,wk,theta,step,var,ic,nd, k)

call filters(akl,ak2,aks,s,en,xout,yk,n, k)

call increment (akl,ak2,aks,s,en,anmu,avg,n, k)

do 30 {=1,n
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xx=2.0*sqrt (1-0.5%ak2(i))
wp(i)=2.0%*asin(akl (i) /xx)

wp (i)=wp(1)/rad

wp(1)=cos(wp(i))

continue

do 60 i=1,n

ak3(i)=abs(akl(i))

continue

kk=mod (k, 100)

ll=mod(k,10)

if(kk.eq.0) print *,'--akl-->',6 (ak3(j),j=1,n)
if(ll.eq.0) write(9,*) k,(ak3(j),3j=1,n)
if(kk.eq.0) print *,'--aks-->', (aks(j),j=1,n)
if(kk.eq.0) print #,k,'-avg->',avy

print #%,(wp(i),i=1,n)

write(9,*) k, (wp(i),i=1,n)
if(k.gt.1500.and.k.1t.2500) write(8,*) k,yk,en
if(k.gt.5000.and.k.1t.6000) write(8,*) k,yk,en
continue

print =*, kl,amu,avg

write(9,*) kl,amu,avg

continue

close(9)

stop

end

subroutine incrvement(akl,ak2,aks,s,en,amu,avg,n, k)
dimension akl(10),ak2(10),aks(10),s(10),ss(10)
dimension dec(10),flayg(10),fading(10)

if (k.ne.1) goto 30

amu=0,001

avg=0,0

fading(1)=0.9

fading(2)=0.9

fading(3)=0.9

fading(4)=0.9

continue

do 10 i=l,n
ss(i)=fading(i)*ss(i)+s(i)*s(i)*(1.0~-fading(i))
continue

do 31 i=1,n

print *,'-en-s-ss->',en,s(i),ss(i)

sum=0, 0

do 20 i=1,n

dec(i)=amu*en*s(i)/(ss(i)+0.0001)
akl(i)=akl(i)-dec(i)

sun=sum+ (abs (aks(i)-aki(i)))/(aks(i))

call stability(akl,ak2,flag,n)
akl(i)=akl(i)+£flag(i)*dec(i)

continue

realk=k
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avg=avg*( (realk-1.0)/realk)+sum/realk
return .
end

oo

subroutine filters(akl,ak2,aks,s,en,xout,xin,n, ki)
dimension w(10,3),a(10,2),b(10,2) ,e(11),xbp(10)
dimension g(10,3),gbp(10),u(10)

dimension g(10,3),s(10),xout(10),c(10)

dimension akl(10),ak2(10),aks(10),as(10)

if (ki.ne.1) goto 200
c open( unit=9,file='martin.dat!,status='new')
200 continue
i=n
do 40 i=1,n
a(i,1)=-(akl(i)*akl(i)+ak2(i)-2.0)
as(i)=-(aks(i)*aks(i)+ak2(i)=-2.0)
a(i,2)=-(1.0-ak2(i))
b(i,1)==0.5%ak2(1i)
b(i,2)=0.5%ak2 (i)
c(i)=-akl(i)*ak2(i)
40 continue
c do 41 i=1,n
c print *,t=kl<k2->',ak1(i),ak2(i)
c4l print *p '-a-b-c->' 'a(i'l) ,6(1,2) 'b(ipl) pb(i,Z) 'C(i)

e(l)=xin
i=n
do 10 j=1,n
w(i,3)=w(i,2)
w(i.2)=w(i,1)
w(i,l)=a(i,1)*w(i,2)+a(i,2)*w(i,3)+e(])
xbp(J)=b(i,1)*w(i,1)+b(i,2)*w(i,3)
e(g+i)=xbp(j)+e(j)

10 continue
en=e (n+1)

i=n

do 20 k=1,n

u(k)=en-xbp (k)
g(i,3)=g(i,2)
g(i,2)=g(i,1)
g(i,1)=a(i,1)*g(i,2)+a(i,2)*g(i,3)+u(k)
gbp(k)=b(i,1)*g(i,1)+b(i,2)*g(4,3)

qa(k,3)=q(k,2)

a(k,2)=q(k,1)

q(k,1)=a(i,1)*q(k,2)+a(i,2)*q(k,3)+gbp(k)
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s(i)=c(i)*q(k,2)

i=i-1
continue
kk=mod (ki, 10)

if(kk.eq.0) write(9,*) ki,en,a(1,1),as(1),a(2,1),as(2)
if(xk.eq.0) print ¥, ki, (a(i,1},1i=1,n)

if(kk.eq.0) print *, ki, (as(i),i=1,n)

if(ki.ge.1800) write(9,*) ki,e(1),en,xbp(1),a(1,1),as(1)
if(ki.ge.1800) print ¥, ki,e(1),en,xbp(1),a(1,1),as(1)
return
end

subroutine system(yk,wk,theta,step,var,ic,n.k)
Adimension theta(10),yout(10),yz(10)
if (k.ne.l) goto 100

continue

call bpf(theta,yz.n, k)

call waves(theta,yout,n,k)

call file(yk,theta,step,ic,n,k)
sun=0.0

wk=0.0

do 10 i=1,n

sum=sun+yout (i)

wkewk+y2 (i)

continue

call gnoise(g,var,k)

yk=gun+g

yR=wk+g

yk=yk+g

return

end

gubroutine waves(theta,yout,n,k)
dimension zkar(10,3),theta(10),yout(10),a1(10)
if(k.ne.1) goto 10
pi=(atan(1.0))*4.0

rad=pi/180.0

do 20 i=1,n

zkar(i,i)=0.0
zkar{i,2)=-sin(theta(i)*rad)
al(i)=2.0*cos(theta(i)*xad)
continue

continue

do 30 i=1i,n

zkar(i,3)=zkar(i,2)
zkar(i,2)=zkar{i,1)
zkar(i,l)-al(i)‘zkat(i.2)-zkar(i,3)
yout (i)=2kar(i,1)

continue

80




return
end

subroutine gnoise(g,s,k)
if(k.ne.1) goto 10

ix=1

yfl=rand(ix)

ix=0

10 continue
sum=o L 0
do 20 i=1,12
yfl=rand(ix)

20 sum=sum+yfl
g=(sum~-6.0) *s
return
end

subroutine stability(akil,ak2,flag,n)
dimension akl(10),ak2(10),flag(10),a(10,2)
do 30 i=1,n
flag(i)=0.0
a(i,l)=-(akl(i)*akl(i)+ak2(i)=-2.0)
a{i,2)==-(1.0-ak2(i))
des=a(i,l)*a(i,1)+4.0%a(i,2)
if (des.lt.0.0) goto 10
des=0,5%gqrt (des)
rootl=0,5%a(i,1)+des
ri=abs(rootl)
root2=0.5*a{i,1)-des
r2=abs (root2)
if (rl.ge.1.0) goto 20
if (r2.qge.1.0) goto 20

c print ¢, !'-real-roots-->',rootl,root2
goto 30

20 flag(i)=1.0
goto 10

10 des=-des
y=0.5*sqrt (des)
x=0.5%*a(i,l)
Xx=abs (x)
if (xx.le.l.0e-6) x=0,0000001
angles={atan(y/x))*57.3
radiusesgrt (xtx+yry)

c print #,'--complex--roots-->',radius,angle
if(radius.ge.1.0) goto 20

30 continue
return
end
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subroutine bpf(theta,yout,n, k)
dimension zkar(10,3),a(10,3),2kma(10,4),b(10,3)
dimension theta(10),g9(10),yin(10),yout(10),uk(10)
if (k.ne.l) go to 10
pi=4.0%*atan(1.0)
rad=pi, 180.0
do 15 i=1,n
zkar(i,1)=0.0
zkar(i,2)=0.0
r=0,985
print *,'—<input--r-->',r
read *,r
do 25 i=1,n
a(i,1)=1
a(i,3)=r*r
g(i)=0.5%(1-r*r)
b(i,1)=g(i)
b(i,3)=-g(i) \
a(i,2)=2+recos(theta(i)*rad)
continue
saves=var
do 35 i=),n
var=2,0
call gnoise(gk,var,6Kk)
yin(i)=gk
zkar(i,d)=zkar(i,2)
zkar(i,2)=zkar(i,l)
2kma{i,3)=2zkma{i,2)
zkma(i,2)=2kma(i,l1)
zkma(i,1)=yin(i)
uk(i)=zkma(i,1)*b(i,1)-zkma(i,2)*b(i,2)+2zkma(i,3)*b(i,3)
zkar(i,l)=zkar{i,2)*a(i,2)-zkar(i,3)*a(i,3)+uk(i)’
print #,'vefil-=>' afil,theta,r
print # tecfi)-->' zkar
yout (i)=zkar(i,1)
varspave
veturn
end
§85555555585559559559559559555555589589

subroutine file(yk,theta,step,ic,n, k)
dimension output(8000),theta(10)

it (k.ne.1) goto 10

call gendata(output,theta,step,ic,n,k)
continue

yk=output (k)

return

end
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subroutine gendata(output, theta,step,ic,nn, k)
DIMENSION YSAMP(65536) ,data(4,8000),output(8000)
dimension theta(10)

OPEN (UNIT=9,FILE='bpsk.dat',STATUS='NEW')
n=7000

amag=1.414

tcarr=4.8

tchip=7.0

ichip=0

tdata=n

tdelay=0.0

1=9999

tchip=200.0

do 10 i=1,nn

tcarr=360.0/theta (i)

call bpsk(n,amag,tcarr,tchip,ichip,tdata,tdelay,l,ysanp)
do 20 j=1,n

if (ic.eq.0) goto 80

if (1.eq.2) goto 50

data(i,j)=ysamp(j)

goto 60

it (3.gt.3000) ysamp(j)=0.0
data(i,j)=ysamp(j) .

continue

continue

‘print ¢,§,'-<>' theta(i),tcarr

continue

tcarr=360.0/90.0

tchip=8.0

call bpsk(n,amay,tcarr,tchip,ichip,tdata,tdelay,l,ysanp)

do 30 i=1,n

A=Q.0

do 40 j=1,nn

usx+data(y, i)

output (i)=x+ysamp(i)

write(9,s) x

continue

if (ic.eq.0) return

nl=n-3000

tchip=200.0

thetal=theta(2)+step

tcarr=360.0/thetal

;all bpsk{nl, arag,tcarr,tchip, ichip,tdata,tdelay,l,ysanp)
=]

do 70 i=3000,n

83




output(i)=output(i)+ysamp(j)
I=j+1

continue

close(9)

return

end

0o
o

this programme was modified to suit the martin
programme

subroutine bpsk

& (n, amag, tcarr, tchip, ichip,tdata,tdelay,l1,ysamp)

oQoo0n

THIS PROGRAM GENERATES SAMPLES OF A DIRECT SEQUENCE BI-PHASE
IFT
KEYED SPREAD SPECTRUM SIGNAL. THE "INFORMATION" BITS AND THE
SPREADING SEQUENCE USED ARE RANDOMLY GENERATED. PARAMETERS
EQUIRED
FOR OPERATION ARE:
N = NUMBER OF SAMPLES GENERATED
FOR CONSISTENCY WITH USE BY AN FFT
ALGORITHN, N SHOULD BE AN INTEGER
POWER OF 2 == TYPICALLY 1024
NOTE: IF N>1024 DIM OF YSAMP NUST CHANGE
MAG =  NAGNITUDE OF CARRIER WAVEFORM
TSDELAY = NUMBER OF SANPLE TIMES DELAYED FROM
t = 0 BEFORE BEGINNING SAMPLES
AN ARBITRARY VALUE THAT ALLOWS SOME
FLEXIBILITY IN SAMPLING. SHOULD BE
ZERO FOR SANPLING AT te=0.
TOATA = NUNBER OF SAMPLE TINES IN ONE DATA BIT
TCHIP = NUNBER OF SAMPLE TINES IN ONE BIT OF .
SPREADING CODE '
TCARR = NUMBER OF SAMPLE TIMES IN ONE LYCLE OF
CARRIER FREQUENCY
TSAMP = DURATION OF A SANPLE TIME. IN GENERAL
TSANP WILL ALWAYS BE = 1.0, SINCE
TINE SANPLED VALUES BECOME STATIC
WHEN STORED AND CAN BE SCALED LATER.

gOOgOOOO

THE ALGORITHM USED TO GENERATE THE DS-BPSK SIGNAL RELIES UPON

-4
t

BUILTIN FORTRAN RANDON NUNBER GENERATOR RAND{L) TO PRODUCE THE

N N Ko N e N e N N o e Yo N No N N o No Nt s No Re Ko Re No Re Re Ry No)

INFORNATION BIT STREAN AND THE SPREADING SEQUENCE CODE. AT
THE TIME

c OF EACH SANPLE, THESE TWO BITS ARE NODULO 2 ADDED TO PRODUCE
A CHIP

c BIT. THIS BIT IS THEN USED TO SHIFT THE PHASE OF THE CARRIER
BY
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c 180 DEGREES IF 1 OR BY O DEGREES IF 0. THE RESULTANT VALUE OF
THE .

C  COSINE FUNCTION IS MULTIPLIED BY THE AMPLITUDE OF THE
WAVEFORM, THEN

C  STORED IN FILE BT.DAT IN THIS FILE DIRECTORY. THE PROCESS IS
CONTIN-

C  UED UNTIL N SAMPLES ARE GENERATED. NOTE THAT FIRST LINE OF
BT.DAT

CONTAINS N, DSBPSK, DATE AND TIME AS ID FIELD FOR FILE.

W.R.TUCKER 9-MAY-83
CONVERTED PROGRAM TO ALLOW FOR M-SEQUENCE CRHIP
M-SEQUENCE GENERATOR REQUIRES DATA FILE FSR.DAT WITH
PARAMETERS FOR FEEDBACK SHIFT REGISTER.

W.R.TUCKER 4-AUG-83

INITIALIZE -- I = INFO BIT NUMBER, J = SP SEQ CODE BIT NUMBER
L IS ARGUMENT FOR RAND(L)--A DIFFERENT SEQUENCE MAY BE
GENERATED BY INITIALIZING L WIWH DIFFERENT VALUES.

Modified by HHL for installation on ULTRIX ECE VAX, 12/90
Writes output in file bpsk.dat

QOOOOHOOOOOONOONONO

DIMENSION YSAMP(65536)
INTEGER I,J,L,INFO,CHIP,IFSR,IFBD(100),IVAL(100)
REAL TDATA,TCHIP,TCARR, TDELAY, TSAMP,MAG, YARG, YSAMP, PI
PI = 3,14159265
TSAMP = 1,0
I=0
J =0
L=0
WRITE(6,900)
900 FORMAT(' GENERATION OF DIRECT SEQUENCE BPSK SIGNAL',
A ' IN FILE bpsk.dat')
WRITE(6,1000)
1000 FORMAT(' # SAMPLES TO GENERATE w ¢ 85)
c READ(S, *)N
print *,n
WRITE(6,1001)
1001 FORMAT(' NAX AMPLITUDE OF SANPLE VALUES (R)= ',5)
c READ(S, *) NAG
mag=anag
print *,pag
WRITE(6,1002)
1002 FORMAT(' # SAMPLES PER CARRIER CYCLE (R)= ',$)
c READ(S, *) TCARR
print #,tcarr
WRITE (6,1003)
1003 FORMAT(' 4§ SAMPLES PER CHIP BIT (R) = ',$)
c READ(S, *) TCHIP
print ¢, tchip
WRITE(6,1020)
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1020

=!,8)

c

1004

1005

1006

aon

1Q10

500
- 600

a0 0 o o

FORMAT(' ENTER (O):RANDOM CHIP, OR (1):REPEAT M-SEQ CHIP

READ(S, *) ICHIP
print *,ichip
WRITE (6,1004)
FORMAT(' # SAMPLES PER INFO BIT (R) = ',%)
READ(5, *) TDATA
print *, tdata
WRITE(6,1005)
FORMAT(' 4 DELAYS BEFORE SAMPLING (R)= ',$)
READ(5, *)TDEIAY
print *,tdelay
WRITE(6,1006) '
§O§MAT(‘ RANDOM NUMBER SEED (I4)~~=> %,8)
=)l ’
READ(S5, *)L
print =,1
Initialize RAND by £31iing with input non-zero L.
Subsequent callis ¥will ke with L = 0.
RANDON=RARB{L}
Qebug )
WRITE({S,*) * SEED ANDR RANODOM NUMBER RETURNED:'‘',L,RANDOM
1=0

WRITE(6,1010)

FORMAT (/1X, ' m=mmcwcccccannueualORKING -~ =memassncuseannms )
IF (ICHIP .EQ. 0) GO TO §

OPEN (UNIT = 1, FILE = 'FSR.DAT', STATUS = 'OLD')
READ (1,500) IFSR

READ (1,600) (IFBD(K) , K = 1, IFSR)

FORMAT{13) '

FORMAT (13)

CLOSE (UNIT = 1)

DO & K= 1, IFSR

IVAL(K) = 3

CONTINUE

DO 169 K = 1,N

CHRECK TO SEE IF WE NEED TO GENERATE A NEW DATA BIT

IF ((K+TDELAY)*TSANP .LT. ISTDATA*TSANP) GO TO 10

IF S0 DO IT HERE

RARDON = RAND(L)

debug

WRITE(6,*) ' IFLAG AND RANDON NUNBER RETURNED:', L, RANDON
INFO = 0

IF (RANDOM .GT. 0.5) INFO = )

'C KEEP TRACK OF WHICH DATA BIT WE ARE ON

10

I = I+3
CONTINUE

C NOW CHECK TO SEE IF WE NEED TC GENERATE A NEW CHIP BIT

IF ((K+TDELAY)*TSANP ,LT. J*TCHIP*TSANP) GO TO 20
IF (ICHIP .NE. 1) GO TO 15

CHIP = IVAL{IFSR)

CALL NSEQ(IFSR, IFBD, IVAL)
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GO TO 19
15 CONTINUE
C IF 50 DO IT HERE
RANDOM = RAND(L)
CHIP = 0
IF (RANDOM .GT. 0.5) CHIP = 1
C KEEP TRACK OF THE CHIP BIT NUMBER
19 CONTINUE
J = J+1
20 CONTINUE
C NOW WE DETERMINE THE PHASE SHIFT
PHASE = FLOAT(MOD(INFO + CHIP,2))
€ COMPUTE THE ARGUMENT FOR THE COSINE FUNCTION
YARG = 2.0%PI*(1.0/(TCARR*TSAMP))* (K+TDELAY) + PI®*PHASE
YSAMP (K)= MAG * COS(YARG)
100 CONTINUE
C NOW SAVE THE VALUE
¢ ranga OPEN (UNIT=1,FILE='bpsk.dat',STATUS='NEW')
c CALL DATE (BDATE)
(o} CALL TIME(CTIME) _
c-ranga  WRITE(l,125)N,MRG,TCARR,TCHIP,TDATA
125 FORMAT(I5,5X,F4.1,10id*DSBPSK+M2,F7.2,1Hf,F7.2,1Hc,F7.),
' *+  1Hd)
c-xranga - WRITE(1,150) (YSAMP(I),I=1,N)

do 121 i=1,n
c write(i,*) ysamp(i)
121 continue

150 FORMAT(BF16.8)
CLOSE (UNIT=])
return
END

SUBROUTINE MSEQ(IFSR,IFDB,IVAL)
¢ THIS SUBROUTINE DSRFORMS THE SHIFTING OPERATION OF AN IFSR
STAGE |
¢ FEEDBACK SHIFY REGISTER, WITH FEED BACK CONNECTIONS AS
YNDICATED
¢ BY IFDB. IVAL IS THE INITIAL CONTENTS OF THE FSR AND WILL
CONTAIN
€  THE FINAL CONTENTS AFTER SHIFTING.
¢ W.R. TUCKER 4 AUG 83
INTEGER 1FDB(IFSR), IVAL(IFSR)
ISUM = 0
DC 10 X = 1, IFSR
ISUM = IFDB(X) * IVAL{I) + 1SUM
10  CONTINUE
IBIT = MOD(ISUM,2)
DO 20 I = 1, IFSR - 1
IVAL(IFSR + 1 = I) = IVAL(IFSR =~ I )
20 CONTINUE
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IVAL(1) = IBIT
RETURN
END

3313223222 32332322 323222 ettt
3332322212323 2 2222323222122 32L23222
1332222221133 221322 2221323222 2232322
FELTLITTLLTLLLTTLATLLIPIIPBIASIRB IS
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